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Abstract
Reversibility of one-dimensional cellular automata with periodic boundary
conditions is discussed. It is shown that there exist exactly 16 reversible
elementary cellular automaton rules for infinitely many cell sizes by means
of a correspondence between elementary cellular automaton and the de Bruijn
graph. In addition, a sufficient condition for reversibility of three-valued and
two-neighbour cellular automaton is given.

PACS numbers: 02.10.Ox, 02.30.Ik, 05.65.+b, 87.17.−d

1. Introduction

For the last decade there has been an increasing interest in the study of ultradiscrete dynamical
systems, which take discrete values in discrete time steps, from the viewpoint of integrability.
In this context, one of the most interesting reversible systems is the box–ball system [1, 2],
which is a kind of ‘filter’ cellular automata. The box–ball systems are an extension of a
soliton cellular automaton proposed by Takahashi and Satsuma [3]. These cellular automata
have solitonical nature and are directly connected with soliton equations by a procedure called
the ultradiscretization [4]. Moreover, they preserve integrable properties such as sufficiently
many conserved quantities [5], therefore the box–ball systems are considered to be integrable
cellular automata. Imposing periodic boundary conditions to the box–ball systems, their
integrability is still preserved [6, 7]. Thus, these integrable cellular automata are considered
to be an ultimate discretization of integrable systems and to have rich mathematical structures
[8, 9]. On the other hand, although there exist many integrable continuous or discrete systems
other than soliton equations, integrable cellular automata other than the box–ball systems are
scarcely known. In general, reversibility of a dynamical system is a necessary condition for
its integrability, hence if an integrable cellular automaton exists then it must be reversible.
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Therefore, if we want to find integrable cellular automata then we have to search reversible
ones.

One-dimensional cellular automaton is a discrete dynamical system which is composed
of regular array of cells. Each cell takes only a finite number of states which are updated by a
local transition function in discrete time steps. The updating rule is quite simple, but cellular
automata in general show complicated behaviour [10–12]. Since time evolution of a cellular
automaton with periodic boundary conditions can be regarded as a mapping from a finite
set into itself, if the mapping is injective then the rule is reversible, that is, the inverse time
evolution is uniquely determined. A reversible cellular automaton preserves all information
of the initial states in any time step, hence its reversibility suggests existence of conserved
quantities. Although reversibility of cellular automata has been discussed many times from
various viewpoints [13], as far as the authors know, reversibility of concrete cellular automata
rules with periodic boundary conditions for infinitely many cell sizes has not been proved yet
except for some cases [14].

In this paper, we show a correspondence between configurations of a cellular automaton
with periodic boundary conditions and closed walks in the de Bruijn graph. Using the
correspondence, we give a necessary and sufficient condition for reversibility of a cellular
automaton rule for infinitely many cell sizes upon the trace of the weighted adjacency matrix
of the de Bruijn graph. Then we show reversibility of the rule 154 of elementary cellular
automaton. In addition, we show all the reversible elementary cellular automaton rules are
the rules 150, 154, 170 and 204 up to automorphisms. We also give a sufficient condition
for reversibility of three-valued and two-neighbour cellular automaton for infinitely many cell
sizes.

This paper is organized as follows. In section 2, we show a correspondence between
configurations of the cellular automaton A(r)

l with periodic boundary conditions and closed
walks in the de Bruijn graph G

(r)
l−1 through a mapping on the edge set of the graph, and give

a necessary and sufficient condition for reversibility of the cellular automaton. In section 3,
we classify reversible elementary cellular automaton rules and give the cell sizes for which
the rules are reversible. In section 4, we show a sufficient condition for reversibility of the
cellular automaton A(3)

2 . Section 5 is devoted to concluding remarks.

2. Cellular automata and the de Bruijn graphs

The de Bruijn graph denoted by G
(r)
l can be described as follows. The vertices of G

(r)
l are

all the l-tuples α1α2 · · · αl where the αi range over the elements of Zr := {0, 1, 2, . . . , r − 1}.
A directed edge joins a vertex α1α2 · · ·αl to another vertex α2α3 · · · αlβ and is denoted by
α1α2 · · ·αlβ. Hence each vertex of G

(r)
l has both its in-degree and out-degree equal to r. The

de Bruijn graph G
(r)
l has a unique path of length l which connects arbitrary two vertices and

rL closed walks of length L for ∀L > l [15]. A walk of length L in a graph whose first and
last edges are u and v, respectively, is denoted by a sequence of L edges as

u · · · v︸ ︷︷ ︸
L

.

An example of the de Bruijn graph, G
(2)
2 , is given in figure 1.

There exist graph automorphisms �i , i = 1, 2, . . . , r − 1 of the de Bruijn graph G
(r)
l

given by

�i(α1α2 · · · αl+1) = (α1 + i)(α2 + i) · · · (αl+1 + i) (mod r)
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Figure 1. The de Bruijn graph G
(2)
2 .

Figure 2. Time evolution of the ECA rule whose local transition function is (1) for the initial state
in which the values of cells are chosen randomly 0 or 1. The number of cells is 301. Cells with
value 1 and 0 are shown in black and white respectively. The configurations at successive time
steps are shown on successive lines.

where α1α2 · · ·αl+1 is an edge. For the de Bruijn graph G
(2)
2 , �1 is as follows:

�1(111) = 000 �1(110) = 001 �1(101) = 010 �1(100) = 011

�1(011) = 100 �1(010) = 101 �1(001) = 110 �1(000) = 111

and is realized as the rotation of π in figure 1.
On the other hand, the one-dimensional cellular automaton A = 〈N, Zq, E, δ〉 is defined

by the one-dimensional array of N cells, a finite set of values Zq , the neighbourhood
E := {e1, e2, . . . , ek} and a local transition function δ : Z

k
q → Zq . A mapping c : ZN → Zq

is called a configuration of A. The global transition function FA maps the set Z
N
q of all the

configurations of A into itself and is defined by

FA(c) = c′

where

c′(i) = δ(c(i + e1), c(i + e2), . . . , c(i + ek)) i = 1, 2, . . . , N

and c(i) ∈ Zq stands for the value of the ith cell. From now on, a cellular automaton
will be assumed to be with periodic boundary conditions, unless otherwise stated. For
example, let q = 2 and E = {−1, 0, 1}, then we obtain elementary cellular automaton (ECA)
A = 〈N, Z2, {−1, 0, 1}, δECA〉, where δECA : Z

3
2 → Z2 is the local transition function. Time

evolution of an ECA rule whose local transition function is given as

δECA(1, 1, 1) = 1 δECA(1, 1, 0) = 0 δECA(1, 0, 1) = 0

δECA(1, 0, 0) = 1 δECA(0, 1, 1) = 1 δECA(0, 1, 0) = 0

δECA(0, 0, 1) = 1 δECA(0, 0, 0) = 0

(1)

is shown in figure 2.
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We consider two automorphisms on the cellular automaton A = 〈N, Zq, E, δ〉. One is
the reflection σ , which is given by

σ : δ(c(i + e1), c(i + e2), . . . , c(i + ek)) �→ δ(c(i + ek), c(i + ek−1), . . . , c(i + e1))

i = 1, 2, . . . , N.

By definition, σ satisfies σ 2 = id, that is, σ constitutes the symmetric group S2 of degree 2.
Another is the conjugation τj , j = 1, 2, . . . , p(q) − 1, where q is the number of the elements
of Zq and p(q) is the number of partitions of q. The conjugation τj are induced by the
symmetric group Sq of degree q which acts on Zq and whose element is also denoted by τj .
Each τj acts on A = 〈N, Zq, E, δ〉 as follows:

τj : δ(c(i + e1), c(i + e2), . . . , c(i + ek))

�→ τ−1
j [δ(τj (c(i + e1)), τj (c(i + e2)), . . . , τj (c(i + ek)))] i = 1, 2, . . . , N.

If we put the neighbourhood E = {e1, e2, . . . , ek} as

ei = e1 + i − 1 i = 2, 3, . . . , k

and assume k = l + 1 and q = r then each element of the set of the neighbours Z
k
q = Z

l+1
r

corresponds to an edge of the de Bruijn graph G
(r)
l . Therefore, it is equivalent to give a

mapping φ : E � Z
l+1
r → Zr , where E is the edge set of G

(r)
l , and to give a local transition

function δ : Z
l+1
r → Zr of the cellular automaton A. Thus we can identify the mapping

φ : E → Zr and a rule of A. We call a mapping φ identified with the rule R of A ‘the mapping
associated with the rule R of A’, and denote it by φR . Hereafter, under the above assumption,
the cellular automaton A is denoted by A(r)

l+1.
By the mapping φR : E → Zr , each closed walk in G

(r)
l corresponds to a configuration

of A(r)
l+1 with periodic boundary conditions as follows [16, 17]. Consider the Z-module

generated by the edge set E of the de Bruijn graph G
(r)
l and denote it also by E . Then we

regard a closed walk εi1εi2 · · · εin in G
(r)
l as an element εi1εi2 · · · εin of the tensor product

space E⊗n := E ⊗ E ⊗ · · · ⊗ E︸ ︷︷ ︸
n

. Similarly, we denote the Z-module generated by Zr also by

Zr and identify a configuration qi1qi2 · · · qin of the cellular automaton A(r)
l+1 and an element

qi1qi2 · · · qin of Z
⊗n
r := Zr ⊗ Zr ⊗ · · · ⊗ Zr︸ ︷︷ ︸

n

. Then φ⊗N
R : E⊗N → Z

⊗N
r , φ⊗N

R

(
εi1εi2 · · · εiN

)
:=

φR

(
εi1

)
φR

(
εi2

) · · ·φR

(
εiN

)
maps a closed walk of length N in G

(r)
l into an element of Z

N
r . If

the mapping φ⊗N
R is injective then the corresponding rule is reversible for the cell size N.

Because the number of possible configurations of A(r)
l+1 is qN = rN and G

(r)
l has rN closed

walks of length N for any N > l.
Now we consider the adjacency matrix denoted by MG

(r)
l of the de Bruijn graph G

(r)
l

[18]. The adjacency matrix MG
(r)
l of G

(r)
l is a rl × rl matrix whose entries mij are given by

mij =
{

1 if vivj is a directed edge
0 otherwise

where vi and vj are vertices of G
(r)
l and vivj denotes a directed edge which connects vi and

vj in the direction from vi to vj . For example, the adjacency matrix MG
(2)
2 of G

(2)
2 is

MG
(2)
2 =




1 1 0 0
0 0 1 1
1 1 0 0
0 0 1 1


 (2)

where we put v1 := 00, v2 := 01, v3 := 10 and v4 := 11.
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Next we introduce the weighted adjacency matrix denoted by MRG
(r)
l of the de Bruijn

graph G
(r)
l with the mapping φR associated with the rule R of the cellular automaton A(r)

l+1.
The entries mij of MRG

(r)
l are given by

mij =




a0 if vivj is a directed edge and φR(vivj ) = 0
a1 if vivj is a directed edge and φR(vivj ) = 1

...

ar−1 if vivj is a directed edge and φR(vivj ) = r − 1
0 otherwise.

For example, the weighted adjacency M154G
(2)
2 of G

(2)
2 with the mapping φ154, which is

equivalent to the local transition function (1), is

M154G
(2)
2 =




a0 a1 0 0
0 0 a0 a1

a1 a0 0 0
0 0 a0 a1


 . (3)

Consider the tensor algebra T (W) = ⊕∞
i=0 W⊗i , where W is the Z-module generated

by the weights a0, a1, . . . , ar−1. We regard the weighted adjacency matrix as a matrix over
T (W) and define a product ⊗ : M(T (W), n) × M(T (W), n) → M(T (W), n) of two n × n

matrices A = (αij )i,j=1,2,...,n B = (βij )i,j=1,2,...,n over T (W) as

A ⊗ B :=
(

n∑
k=1

αik ⊗ βkj

)
i,j=1,2,...,n

.

Then, for the L(�l)th power of the matrix MRG
(r)
l ,

MRG
(r)⊗L
l := MRG

(r)
l ⊗ MRG

(r)
l ⊗ · · · ⊗ MRG

(r)
l︸ ︷︷ ︸

L

its entry in position (i, j),

(
MRG

(r)⊗L
l

)
ij

=
rl∑

k1,k2,...,kL−1=1

mik1 ⊗ mk1k2 ⊗ · · · ⊗ mkL−1j︸ ︷︷ ︸
L

(4)

where mik1,mk1k2 , . . . , mkL−1j ∈ {0, a0, a1, . . . , ar−1}, is a non-commutative polynomial of
degree L in a0, a1, . . . , ar−1 with rL−1 terms of coefficient 1. Because, from the unique path
property of the de Bruijn graph, all the entries of MRG

(r)⊗l
l are monomials of length l in

a0, a1, . . . , ar−1, then, by multiplying MRG
(r)
l , all the entries of MRG

(r)⊗l+1
l are polynomials

of degree l + 1 in a0, a1, . . . , ar−1 with r terms of coefficient 1. Hence inductively we have the
above fact. By definition of the weighted adjacency matrix and the product ⊗, it is clear that
each term of the polynomial (4) corresponds to a walk of length L in the de Bruijn graph G

(r)
l .

In particular, all the terms of the trace of MRG
(r)⊗L
l correspond one-to-one to all the closed

walks of length L in G
(r)
l . Therefore, we obtain the following theorem:

Theorem 1. A rule of the cellular automaton A(r)
l+1 = 〈N, Zr , E, δ〉 of cell size N is reversible

if and only if all the rN terms of Tr
[
MRG

(r)⊗N
l

]
, which are monomials of degree N in a0,

a1, . . . , ar−1, are distinct.

In the next section, we show a necessary and sufficient condition for reversibility of ECA
using theorem 1.
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3. Reversibility of elementary cellular automaton

In this section, we concentrate on ECA. Each ECA rule is referred to the rule number R given
by

R :=
1∑

s1=0

1∑
s2=0

1∑
s3=0

δECA(s1, s2, s3)2
4s1+2s2+s3

where δECA : Z
3
2 → Z2 is the local transition function [10]. An ECA rule given by the local

transition function (1) is referred to the number R = 154.
A mapping φR : E → Z2, where E := {000, 001, 010, 011, 100, 101, 110, 111} is the

edge set of the de Bruijn graph G
(2)
2 , is equivalent to the local transition function of an ECA

rule. For example, the following mapping is equivalent to the rule 154:

φ154(ε1) = 1 φ154(ε2) = 0 φ154(ε3) = 1 φ154(ε4) = 0

φ154(ε5) = 0 φ154(ε6) = 1 φ154(ε7) = 1 φ154(ε8) = 0

where we put ε1 := 111, ε2 := 110, ε3 := 011, ε4 := 101, ε5 := 010, ε6 := 100, ε7 := 001
and ε8 := 000.

From theorem 1, in order to show reversibility of an ECA rule for the cell size N, we
have only to show that all the 2N terms of Tr

[
MRG

(2)⊗N
2

]
, which are monomials of degree

N in a0 and a1, are distinct. We see that if φR(ε1) = φR(ε8) for the loops ε1 and ε8, then
the configuration φ⊗N

R (ε1ε1 · · · ε1) coincides with φ⊗N
R (ε8ε8 · · · ε8) for any N. Therefore, such

rules are never reversible for any N. There exist 128 such rules, which are referred to even
numbers less than 128 or odd numbers greater than 128. Hence, in the following, we consider
the rules referred to even numbers equally greater than 128 or odd numbers smaller than 128.

For the number of εi such that φR(εi) = 1, we have the following lemma. The property
of this lemma is equivalent to the notion of ‘balancedness’ of the local transition function,
which is known for a necessary condition for reversibility [19].

Lemma 1. If the number of εi such that φR(εi) = 1 is not equal to 4 then the corresponding
ECA rule is not reversible for infinitely many cell sizes.

Proof. We can assume φR(ε1) = 1 and φR(ε8) = 0. Then there exist three cases satisfying
the condition of lemma: the number of edges εi such that φR(εi) = 1 except for ε1 is 0, 1 or 2.
The cases when the number of such εi is greater than 5 are reduced to the above cases by
exchanging 0 and 1. If there is no edge εi such that φR(εi) = 1 then the corresponding rule
is obviously non-reversible because we obtain two distinct closed walks of arbitrary length
mapped into the same configuration by φR .

Assume that there exists an edge εi (i = 2, 3, . . . , 7) such that φR(εi) = 1. If φR(ε5) =
φR(ε6) = φR(ε7) = 0 then the rule is not reversible for N � 3, because we obtain two distinct
closed walks of length n + 3 mapped into the same configuration by φR:

φ⊗n+3
R (ε7ε5ε6 ε8 · · · ε8︸ ︷︷ ︸

n

) = φ⊗n+3
R (ε8 · · · ε8︸ ︷︷ ︸

n+3

) = 0 · · · 0︸ ︷︷ ︸
n+3

. (5)

Therefore if φR(ε2) = 1, φR(ε3) = 1 or φR(ε4) = 1 then the rule is not reversible. Similarly,
if φR(ε5) = 1, φR(ε6) = 1 or φR(ε7) = 1 then the rule is not reversible.

Assume that there exist two edges εi (i = 2, 3, . . . , 7) such that φR(εi) = 1. Then there
exist 15 cases. If the two edges which satisfy φR(εi) = 1 are chosen from ε2, ε3 and ε4 then
the rule is not reversible because we obtain two distinct closed walks mapped into the same
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configuration (5) by φR . If we put φR(ε2) = φR(ε5) = 1 or φR(ε3) = φR(ε5) = 1 then we have

φ⊗n+3
R (ε7ε5ε6 ε8 · · · ε8︸ ︷︷ ︸

n

) = φ⊗n+3
R (ε3ε2ε6 ε8 · · · ε8︸ ︷︷ ︸

n−1

ε7) = 010 · · · 0︸ ︷︷ ︸
n+3

or

φ⊗n+3
R (ε7ε5ε6 ε8 · · · ε8︸ ︷︷ ︸

n

) = φ⊗n+3
R (ε7ε3ε2ε6 ε8 · · · ε8︸ ︷︷ ︸

n−1

) = 010 · · · 0︸ ︷︷ ︸
n+3

therefore the rule is not reversible. In the remaining 10 cases, we similarly obtain two distinct
closed walks of length N � 4 mapped into the same configuration by φR respectively. Hence
the corresponding rules are not reversible. �

Next we consider automorphisms on ECA. Automorphisms on ECA preserve reversibility
of an ECA rule, that is, a reversible rule is mapped into another reversible rule by the
automorphisms respectively. The graph automorphism �1 : E → E ,

�1(εi) = ε9−i i = 1, 2, . . . , 8

of the de Bruijn graph G
(2)
2 introduced in section 2 (this automorphism is realized as the

rotation of π in figure 1) induces an action on φR : E → Z2, which is also denoted by �1:

�1(φR(εi)) := φR(�1(εi)) = φR(ε9−i ) i = 1, 2, . . . , 8. (6)

The mapping �1 acts on {φR|R = 0, 1, . . . , 255} as a permutation, hence it can be regarded as
an automorphism on ECA. The automorphism �1 maps each rule referred to an even number
equally greater than 128, which satisfies φR(ε1) = 1 and φR(ε8) = 0, into a rule referred to an
odd number smaller than 128, which satisfies φR(ε1) = 0 and φR(ε8) = 1. Therefore we only
have to consider even rules equally greater than 128. In addition, we consider the reflection σ

and the conjugation τ1 introduced in section 2 [10]. The reflection σ is

σ : δ(c(i − 1), c(i), c(i + 1)) �→ δ(c(i + 1), c(i), c(i − 1)) i = 1, 2, . . . , N

and the conjugation τ1, which exchange 0 and 1, is

τ1 : δ(c(i − 1), c(i), c(i + 1)) �→ 1 − δ(1 − c(i − 1), 1 − c(i), 1 − c(i + 1))

i = 1, 2, . . . , N.

For example, the rule 154 is mapped into the rules 210, 166 and 89 by σ , τ1 and �1, respectively.
Considering the above facts, we conclude that there exist 10 rules which may be reversible

up to automorphisms. Since the rules 170 (right-shift) and 204 (identity) are obviously
reversible and reversibility of the rule 150 has already been proved [14], we only have to
consider the following seven rules:

142, 154, 156, 172, 178, 184, 232. (7)

In the following, we show that only the rule 154 is reversible among the above list.
At first, we show reversibility of the rule 154.

Proposition 1. The rule 154 ECA is reversible for the cell size N ≡ 1 (mod 2).

Proof. We put N = 2k + 1 (k ∈ N). From theorem 1, in order to show reversibility of rule
154, we show that all the 2N terms of

Tr
[
M154G

(2)⊗N
2

] = Tr







a0 a1 0 0
0 0 a0 a1

a1 a0 0 0
0 0 a0 a1




⊗N

 (8)

are distinct.
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For k = 1, this is true as follows:

Tr
[
M154G

(2)⊗3
2

]

= Tr




a0a0a0 + a1a0a1 a0a0a1 + a1a0a0 a0a1a0 + a1a1a0 a0a1a1 + a1a1a1

a0a1a0 + a1a0a1 a0a1a1 + a1a0a0 a0a0a0 + a1a1a0 a0a0a1 + a1a1a1

a0a0a1 + a1a0a0 a0a0a0 + a1a0a1 a0a1a0 + a1a1a0 a0a1a1 + a1a1a1

a0a1a0 + a1a0a1 a0a1a1 + a1a0a0 a0a0a0 + a1a1a0 a0a0a1 + a1a1a1


 .

= a0a0a0 + a1a0a1 + a0a1a1 + a1a0a0 + a0a1a0 + a1a1a0 + a0a0a1 + a1a1a1 (9)

We have the following lemma:

Lemma 2. Suppose N = 2k + 1 (k ∈ N). For M154G
(2)⊗N
2 , we have

1.
∑4

j=1

(
M154G

(2)⊗N
2

)
1j

= ∑4
j=1

(
M154G

(2)⊗N
2

)
2j

= ∑4
j=1

(
M154G

(2)⊗N
2

)
3j

= ∑4
j=1

(
M154G

(2)⊗N
2

)
4j

2.
(
M154G

(2)⊗N
2

)
12 +

(
M154G

(2)⊗N
2

)
14 = (

M154G
(2)⊗N
2

)
22 +

(
M154G

(2)⊗N
2

)
24

3.
(
M154G

(2)⊗N
2

)
13 = (

M154G
(2)⊗N
2

)
33

4.
(
M154G

(2)⊗N
2

)
24 = (

M154G
(2)⊗N
2

)
44

where Aij stands for the (i, j)-entry of A.

Proof of lemma. There exist 2N walks of length N in G
(2)
2 whose first vertex is vi, i = 1, 2, 3, 4.

These walks are mapped into distinct elements of Z
⊗N
2 by φ154 because two edges starting

from any vertex are mapped into distinct elements of Z2 by φ154. Moreover, all the 2N walks
of length N whose first vertex is vi correspond one-to-one to all the 2N terms of the sum of the
ith row of M154G

(2)⊗N
2 :

4∑
j=1

(
M154G

(2)⊗N
2

)
ij

i = 1, 2, 3, 4. (10)

Therefore all the 2N terms of (10), which are monomials of degree N in a0 and a1, are distinct
for any i = 1, 2, 3, 4. On the other hand, there exist 2N monomials of degree N in a0 and a1,
and these monomials constitute the terms of (10). Hence (10) is the same for all i = 1, 2, 3, 4.
Therefore the statement 1 is true.

From (9), the statements 2, 3 and 4 are true for k = 1. Assume that these are true for k.
For simplicity, we put A := M154G

(2)⊗N
2 and C := ∑4

j=1

(
M154G

(2)⊗N
2

)
1j

. Using

M154G
(2)⊗2
2 =




a0a0 a0a1 a1a0 a1a1

a0a1 a0a0 a1a0 a1a1

a1a0 a1a1 a0a0 a0a1

a0a1 a0a0 a1a0 a1a1




and the assumption of induction, we have(
M154G

(2)⊗N+2
2

)
13 = (

A ⊗ M154G
(2)⊗2
2

)
13

= {A11 + A12 + A14}a1a0 + A13a0a0

= {C − A13}a1a0 + A13a0a0

= {C − A33}a1a0 + A33a0a0
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= {A31 + A32 + A34}a1a0 + A33a0a0

= (
A ⊗ M154G

(2)⊗2
2

)
33

= (
M154G

(2)⊗N+2
2

)
33.

Similarly, we obtain
(
M154G

(2)⊗N+2
2

)
24 = (

M154G
(2)⊗N+2
2

)
44. Moreover, we have(

M154G
(2)⊗N+2
2

)
12 +

(
M154G

(2)⊗N+2
2

)
14

= (
A ⊗ M154G

(2)⊗2
2

)
12 +

(
A ⊗ M154G

(2)⊗2
2

)
14

= {A11 + A13}(a0a1 + a1a1) + {A12 + A14}(a0a0 + a1a1)

= {C − (A12 + A14)}(a0a1 + a1a1) + {A12 + A14}(a0a0 + a1a1)

= {C − (A22 + A24)}(a0a1 + a1a1) + {A22 + A24}(a0a0 + a1a1)

= {A21 + A23}(a0a1 + a1a1) + {A22 + A24}(a0a0 + a1a1)

= (
A ⊗ M154G

(2)⊗2
2

)
22 +

(
A ⊗ M154G

(2)⊗2
2

)
24

= (
M154G

(2)⊗N+2
2

)
22 +

(
M154G

(2)⊗N+2
2

)
24.

Thus the lemma is proved. �

From the above lemma, we have

Tr
[
M154G

(2)⊗N
2

]
= (

M154G
(2)⊗N
2

)
11 +

(
M154G

(2)⊗N
2

)
22 +

(
M154G

(2)⊗N
2

)
33 +

(
M154G

(2)⊗N
2

)
44

= (
M154G

(2)⊗N
2

)
11 +

(
M154G

(2)⊗N
2

)
22 +

(
M154G

(2)⊗N
2

)
13 +

(
M154G

(2)⊗N
2

)
24

= (
M154G

(2)⊗N
2

)
11 +

(
M154G

(2)⊗N
2

)
12 +

(
M154G

(2)⊗N
2

)
13 +

(
M154G

(2)⊗N
2

)
14.

As in the proof of the statement 1 of the above lemma, all the 2N terms of the last formula
are distinct. Thus, for any N ≡ 1 (mod 2), all the 2N terms of Tr

[
M154G

(2)⊗N
2

]
are distinct.

Hence the rule 154 ECA is reversible for the cell size N ≡ 1 (mod 2). �

Next we show that the rules 142, 156, 172, 178, 184 and 232 are not reversible for any
cell size N � 4. For the rule 142, the mapping φ142 is as follows:

φ142(ε1) = φ142(ε3) = φ142(ε5) = φ142(ε7) = 1

φ142(ε2) = φ142(ε4) = φ142(ε6) = φ142(ε8) = 0.

Two closed walks of length 4, ε2ε4ε3ε1 and ε2ε6ε7ε3, are mapped into the same configuration
0011 by φ142, hence the rule 142 is not reversible for N = 4. Moreover, from the above closed
walks of length 4, we can obtain two closed walks of length N > 4 mapped into the same
configuration by φ142:

φ⊗N
142 (ε2ε4ε3ε1 ε1 · · · ε1︸ ︷︷ ︸

N−4

) = φ⊗N
142 (ε2ε6ε7ε3 ε1 · · · ε1︸ ︷︷ ︸

N−4

) = 0011 1 · · · 1︸ ︷︷ ︸
N−4

.

Therefore the rule 142 is not reversible for any N � 4.
For the rule 156, the mapping φ156 is as follows:

φ156(ε1) = φ156(ε3) = φ156(ε5) = φ156(ε6) = 1

φ156(ε2) = φ156(ε4) = φ156(ε7) = φ156(ε8) = 0.
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Table 1. All the reversible ECA rules with periodic boundary conditions and the cell sizes for
which the rules are reversible. The rules below the automorphisms σ , τ1, �1 and their compositions
are mapped into the left-most rules by them respectively.

Rule σ τ1 �1 σ ◦ τ1 �1 ◦ σ �1 ◦ τ1 �1 ◦ σ ◦ τ1 Cell size

150 105 N ≡ 1, 2 (mod 3)
154 210 166 89 180 75 101 45 N ≡ 1 (mod 2)
170 240 85 15 All N ∈ N

204 51 All N ∈ N

We can obtain two distinct closed walks mapped into the same configuration of lengths 4, 5,
6 and 7 by φ156 respectively:

φ⊗4
156(ε2ε6ε7ε3) = φ⊗4

156(ε4ε5ε4ε5) = 0101

φ⊗5
156(ε2ε6ε8ε7ε3) = φ⊗5

156(ε4ε3ε2ε4ε5) = 01001

φ⊗6
156(ε2ε6ε7ε5ε4ε3) = φ⊗6

156(ε4ε5ε4ε5ε4ε5) = 010101

φ⊗7
156(ε2ε6ε7ε3ε2ε4ε3) = φ⊗7

156(ε4ε5ε4ε3ε2ε4ε5) = 0101001.

Consider two walks ε6ε7ε3ε2 · · · ε6ε7ε3ε2 and ε5ε4ε5ε4 · · · ε5ε4ε5ε4 of length 4k (k ∈ N).
Note that these two walks mapped into the same configuration by φ156:

φ⊗4k
156 (ε6ε7ε3ε2 · · · ε6ε7ε3ε2) = φ⊗4k

156 (ε5ε4ε5ε4 · · · ε5ε4ε5ε4) = 1010 · · · 1010.

Inserting ε6ε7ε3ε2 · · · ε6ε7ε3ε2 and ε5ε4ε5ε4 · · · ε5ε4ε5ε4 between the first and the second edges
of ε2ε6ε7ε3 and ε4ε5ε4ε5 respectively, we obtain two distinct closed walks of length 4k + 4
mapped into the same configuration by φ156. Similarly, from the above closed walks of lengths
5, 6 and 7, we obtain distinct closed walks of lengths 4k + 5, 4k + 6 and 4k + 7 mapped into the
same configurations by φ156, respectively. Hence the rule 156 is not reversible for any N � 4.

We can similarly show non-reversibility for N � 4 of the rules 172, 178, 184 and 232.
Thus we conclude that only the rule 154 is reversible among the seven rules in (7).

Now we will obtain all reversible ECA rules from the reversible rules 150, 154, 170
and 204 using the automorphisms on ECA. The rules 210, 166 and 180 are mapped into the
rule 154 by the reflection σ , the conjugation τ1 and their composition, respectively. Similarly,
the rule 240 is mapped into the rule 170 by σ , and the rule 240 is invariant with respect to τ1.
The rules 150 and 204 are invariant with respect to both σ and τ1. In addition, we consider the
automorphism �1 (6) induced by the graph automorphism �1 of the de Bruijn graph G

(2)
2 . Each

reversible even rule equally greater than 128 is mapped into a reversible odd rule smaller than
128 by �1. Thus we obtain the following theorem.

Theorem 2. There exist exactly 16 reversible ECA rules for infinitely many cell sizes (see
table 1).

The rules 204 and 170 are trivial, and the rule 150 is additive, that is, whose local transition
function can be regarded as a linear function on Z2. Hence only the rule 154 is considered to
be essentially nonlinear. Therefore, it is expected that the rule 154 has interesting properties.
We will discuss solutions, periods of solutions and conserved quantities of the rule 154 in a
forthcoming paper.

4. A sufficient condition for reversibility of the cellular automaton A(3)
2

In this section, we show a sufficient condition for reversibility of the cellular automaton
A(3)

2 = 〈
N, Z3, {0, 1}, δ(3)

2

〉
with periodic boundary conditions. The sufficient condition
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Figure 3. The de Bruijn graph G
(3)
1 .

is a straightforward extension of a sufficient condition for reversibility of ECA
(
A(2)

3

)
to

A(3)
2 . Observing the weighted adjacency matrices MRG

(2)
2 of the de Bruijn graph G

(2)
2 with

the mapping φR associated with the reversible rules, we obtain the following proposition
concerning a sufficient condition for reversibility of ECA.

Proposition 2. If the weighted adjacency matrix MRG
(2)
2 of the de Bruijn graph G

(2)
2 with the

mapping φR associated with an ECA rule R satisfies
4∑

j=1

(
MRG

(2)
2

)
ij

= Tr
[
MRG

(2)
2

] = a0 + a1 for i = 1, 2, 3, 4

or
4∑

i=1

(
MRG

(2)
2

)
ij

= Tr
[
MRG

(2)
2

] = a0 + a1 for j = 1, 2, 3, 4

then the rule R is reversible for infinitely many cell sizes.

The reversible rules 150, 154 and 170 satisfy this proposition. Since the conditions of
proposition 2 are invariant with respect to the three automorphisms (the reflection σ , the
conjugation τ and the graph automorphism �l), all their automorphic rules (see table 1) also
satisfy this proposition. The only counterexample is the trivial rule 204. Actually, the weighted
adjacency matrix M204G

(2)
2 does not satisfy the condition of proposition 2 as follows:

M204G
(2)
2 =




a0 a0 0 0
0 0 a1 a1

a0 a0 0 0
0 0 a1 a1


 .

Therefore, the condition is not necessary for reversibility.
Now we consider the cellular automaton A(3)

2 = 〈
N, Z3, {0, 1}, δ(3)

2

〉
. The de Bruijn graph

associated with A(3)
2 is G

(3)
1 (see figure 3). The adjacency matrix of G

(3)
1 is

MG
(3)
1 =


1 1 1

1 1 1
1 1 1




where we put v1 := 0, v2 := 1 and v3 := 2. We also consider the weighted adjacency matrix
MRG

(3)
1 of G

(3)
1 with the mapping φR associated with the rule R of A(3)

2 . Each rule is referred
to the number R given by

R :=
2∑

s1=0

2∑
s2=0

δ
(3)
2 (s1, s2)3

3s1+s2
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where δ
(3)
2 is the local transition function. For example, for the mapping φ14001 associated with

the rule 14001

φ14001(ε1 := 22) = 2 φ14001(ε2 := 21) = 0 φ14001(ε3 := 20) = 1

φ14001(ε4 := 12) = 0 φ14001(ε5 := 11) = 1 φ14001(ε6 := 10) = 2

φ14001(ε7 := 02) = 1 φ14001(ε8 := 01) = 2 φ14001(ε9 := 00) = 0

the weighted adjacency matrix M14001G
(3)
1 is

M14001G
(3)
1 =


a0 a2 a1

a2 a1 a0

a1 a0 a2


 .

We obtain the following proposition concerning a sufficient condition for reversibility of
A(3)

2 and is a straightforward extension of proposition 2 for ECA to A(3)
2 .

Proposition 3. If the weighted adjacency matrix MRG
(3)
1 of the de Bruijn graph G

(3)
1 with the

mapping φR associated with a rule R of the cellular automaton A(3)
2 satisfies

3∑
j=1

(
MRG

(3)
1

)
ij

= Tr
[
MRG

(3)
1

] = a0 + a1 + a2 for i = 1, 2, 3 (11)

or
3∑

i=1

(
MRG

(3)
1

)
ij

= Tr
[
MRG

(3)
1

] = a0 + a1 + a2 for j = 1, 2, 3 (12)

then the rule R is reversible for infinitely many cell sizes.

Proof. Assume that MRG
(3)
1 satisfies the condition (11). There exist three cases: (i) all the

three rows of MRG
(3)
1 are the same; (ii) only two rows are the same and (iii) all the three rows

are distinct. Remark that the condition (11) is equivalent to the condition that all the three
edges starting from any vertex of G

(3)
1 are mapped into distinct element of Z3 by φR . Hence

if (11) holds then

3∑
i=1

(
MRG

(3)⊗N
1

)
1i

=
3∑

i=1

(
MRG

(3)⊗N
1

)
2i

=
3∑

i=1

(
MRG

(3)⊗N
1

)
3i

(13)

for any N. Moreover, (11) ensures that all the 3N terms of each formula in (13), which are
monomials of degree N in a0, a1 and a2, are distinct (see proof of lemma 2).

In the case (i), MRG
(3)
1 has the form:

MRG
(3)
1 =


α β γ

α β γ

α β γ


 α, β, γ ∈ {a0, a1, a2} α = β = γ. (14)

Then, for any N ∈ N, we have(
MRG

(3)⊗N
1

)
1j

= (
MRG

(3)⊗N
1

)
2j

= (
MRG

(3)⊗N
1

)
3j

for j = 1, 2, 3. (15)

Therefore we obtain

Tr
[
MRG

(3)⊗N
1

] =
3∑

j=1

(
MRG

(3)⊗N
1

)
1j

(16)
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=
3∑

j=1

(
MRG

(3)⊗N
1

)
2j

(17)

=
3∑

j=1

(
MRG

(3)⊗N
1

)
3j

. (18)

Since all the terms on the right-hand side of (16), (17) and (18) are distinct, respectively,
the rule R whose weighted adjacency matrix MRG

(3)
1 has the form (14) is reversible for any

N ∈ N.
In the case (ii), MRG

(3)
1 has the following three forms:

(I)


α β γ

α β γ

β α γ


 (II)


α β γ

γ β α

α β γ


 (III)


α γ β

α β γ

α β γ


 (19)

where, α, β, γ ∈ {a0, a1, a2}, α = β = γ . Then MRG
(3)⊗2
1 are

(I)


αα + βα + γβ αβ + ββ + γα (α + β + γ )γ

αα + βα + γβ αβ + ββ + γα (α + β + γ )γ

αα + βα + γβ αβ + ββ + γα (α + β + γ )γ




(II)


αα + βγ + γα (α + β + γ )β αγ + βα + γ γ

αα + βγ + γα (α + β + γ )β αγ + βα + γ γ

αα + βγ + γα (α + β + γ )β αγ + βα + γ γ




(III)


(α + β + γ )α αγ + γβ + ββ αβ + γ γ + βγ

(α + β + γ )α αγ + γβ + ββ αβ + γ γ + βγ

(α + β + γ )α αγ + γβ + ββ αβ + γ γ + βγ




respectively. Therefore, for any N ∈ N, we obtain (15). Thus (16), (17) and (18) hold, and
reversibility of the corresponding rule R immediately follows.

In the case (iii), MRG
(3)
1 is reduced to the following four forms:

(I)


α β γ

γ β α

β α γ


 (II)


α γ β

α β γ

β α γ




(III)


α γ β

γ β α

α β γ


 (IV)


α γ β

γ β α

β α γ




(20)

where α, β, γ ∈ {a0, a1, a2} α = β = γ . Let MRG
(3)
1 be the form (I). Then(

MRG
(3)
1

)
12 = (

MRG
(3)
1

)
22

(
MRG

(3)
1

)
13 = (

MRG
(3)
1

)
33

and (
MRG

(3)⊗2
1

)
12 = (

MRG
(3)⊗2
1

)
32

(
MRG

(3)⊗2
1

)
13 = (

MRG
(3)⊗2
1

)
23

hold. From these relations and (13), we have(
MRG

(3)⊗3
1

)
12 = (

MRG
(3)⊗3
1

)
22

(
MRG

(3)⊗3
1

)
13 = (

MRG
(3)⊗3
1

)
33.

Hence, for any N ≡ 1 (mod 2), inductively we have(
MRG

(3)⊗N
1

)
12 = (

MRG
(3)⊗N
1

)
22

(
MRG

(3)⊗N
1

)
13 = (

MRG
(3)⊗N
1

)
33.



5802 A Nobe and F Yura

Table 2. Reversible rules of the cellular automaton A(3)
2 with periodic boundary conditions and

the cell sizes for which the rules are reversible. All their automorphic rules are reversible.

Rule Cell size

7995, 10179, 1088, 19071, 19305 All N
7527, 8229, 8697, 14001, 14703 N ≡ 1 (mod 2)

Therefore (16) holds. In the remaining cases (II), (III) and (IV), we also obtain (16). Therefore,
the corresponding rule R is reversible for any N ≡ 1 (mod 2).

For the condition (12), reversibility of the corresponding rule is similarly shown. �

If we assume φR(ε9 = 00) = 0, φR(ε5 = 11) = 1 and φR(ε1 = 22) = 2, then there exist
23 rules satisfying (11). Since there exist 3! permutations on {φR(00), φR(11), φR(22)} =
{0, 1, 2}, there exist 23 × 3! = 48 rules satisfying (11). This is also true for (12). But there
exist 3! rules which satisfy both (11) and (12). Therefore, there exist 48 × 2 − 3! = 90 rules
satisfying (11) or (12). From the graph automorphisms �i(i = 1, 2) of G

(3)
2 ,

�i(α1α2) = (α1 + i)(α2 + i)(mod 3) i = 1, 2

where α1α2 is an edge of G
(3)
1 , an automorphism on A(3)

2 denoted also by �i is induced:

�i(φ(α1α2)) := φ(�i(α1α2)) i = 1, 2.

Moreover, there exist another automorphism on A(3)
2 , the reflection σ and the conjugation

τ1 and τ2, which are introduced in section 2. Considering these automorphisms, we conclude
that there exist 10 rules which satisfy (11) or (12) up to automorphisms. These 10 rules are
listed in table 2.

Since the reversibility condition for A(3)
2 is obtained by straightforward extension of the

reversibility condition for ECA to A(3)
2 , it is expected that we can obtain sufficient conditions

for reversibility of the cellular automata A(r)
l+1 = 〈N, Zr , {e1, e2, . . . , el+1}, δ〉 for greater r

and l in the same manner. However, this is not so easy. Extending propositions 2 and 3
straightforwardly, we obtain the following condition which is expected to be a sufficient
condition for reversibility of A(r)

l+1:

Condition 1. The weighted adjacency matrix MRG
(r)
l of the de Bruijn graph G

(r)
l with the

mapping φR associated with a rule R of the cellular automaton A(r)
l+1 satisfies

rl∑
j=1

(
MRG

(r)
l

)
ij

= Tr
[
MRG

(r)
l

] =
r−1∑
k=0

ak for i = 1, 2, . . . , rl

or
rl∑

i=1

(
MRG

(r)
l

)
ij

= Tr
[
MRG

(r)
l

] =
r−1∑
k=0

ak for j = 1, 2, . . . , rl .

But this condition is not sufficient. In the case of A(2)
4 = 〈

N, Z2, {−1, 0, 1, 2}, δ(2)
4

〉
,

although there exist 35 rules up to automorphisms which satisfy the above condition, only 6
of them are reversible. The reversible rules are listed in table 3. Each rule is referred to the
number R given by

R :=
1∑

s1=0

1∑
s2=0

1∑
s3=0

1∑
s4=0

δ
(2)
4 (s1, s2, s3, s4)2

23s1+22s2+2s3+s4
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Table 3. Reversible rules of the cellular automaton A(2)
4 with periodic boundary conditions and

the cell sizes for which the rules are reversible. All their automorphic rules are reversible.

Rule Cell size

65 280 All N
53 040 N ≡ 1 (mod 2)
48 960, 49 980, 61 200 N ≡ 1, 2 (mod 3)
42 330 N ≡ 1, 2, 3, 4, 5, 6 (mod 7)

where δ
(2)
4 is the local transition function. The weighted adjacency matrices of the de

Bruijn graph G
(2)
3 associated with the reversible rules, M65280G

(2)
3 ,M53040G

(2)
3 ,M48960G

(2)
3 ,

M49980G
(2)
3 ,M61200G

(2)
3 and M42330G

(2)
3 are as follows:



a0 a0 0 0 0 0 0 0
0 0 a0 a0 0 0 0 0
0 0 0 0 a0 a0 0 0
0 0 0 0 0 0 a0 a0

a1 a1 0 0 0 0 0 0
0 0 a1 a1 0 0 0 0
0 0 0 0 a1 a1 0 0
0 0 0 0 0 0 a1 a1







a0 a0 0 0 0 0 0 0
0 0 a0 a0 0 0 0 0
0 0 0 0 a1 a1 0 0
0 0 0 0 0 0 a0 a0

a1 a1 0 0 0 0 0 0
0 0 a1 a1 0 0 0 0
0 0 0 0 a0 a0 0 0
0 0 0 0 0 0 a1 a1







a0 a0 0 0 0 0 0 0
0 0 a0 a0 0 0 0 0
0 0 0 0 a0 a0 0 0
0 0 0 0 0 0 a1 a0

a1 a1 0 0 0 0 0 0
0 0 a1 a1 0 0 0 0
0 0 0 0 a1 a1 0 0
0 0 0 0 0 0 a0 a1







a0 a0 0 0 0 0 0 0
0 0 a1 a1 0 0 0 0
0 0 0 0 a1 a1 0 0
0 0 0 0 0 0 a0 a0

a1 a1 0 0 0 0 0 0
0 0 a0 a0 0 0 0 0
0 0 0 0 a0 a0 0 0
0 0 0 0 0 0 a1 a1







a0 a0 0 0 0 0 0 0
0 0 a0 a0 0 0 0 0
0 0 0 0 a1 a0 0 0
0 0 0 0 0 0 a0 a0

a1 a1 0 0 0 0 0 0
0 0 a1 a1 0 0 0 0
0 0 0 0 a0 a1 0 0
0 0 0 0 0 0 a1 a1







a0 a1 0 0 0 0 0 0
0 0 a0 a1 0 0 0 0
0 0 0 0 a1 a0 0 0
0 0 0 0 0 0 a1 a0

a1 a0 0 0 0 0 0 0
0 0 a1 a0 0 0 0 0
0 0 0 0 a0 a1 0 0
0 0 0 0 0 0 a0 a1




where we put v1 := 111, v2 := 110, v3 := 101, v4 := 100, v5 := 011, v6 := 010, v7 := 001
and v8 := 000. For general r and l, it is expected that some of the rules which satisfy condition 1
are reversible.

5. Conclusion

We give a one-to-one correspondence between all the configurations of the cellular automaton
A(r)

l+1 = 〈N, Zr , {e1, e2, . . . , el+1}, δ〉 with periodic boundary conditions and all the rN terms
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of the trace of the nth power of the weighted adjacency matrix of the de Bruijn graph G
(r)
l . The

correspondence is induced by that between the configurations of A(r)
l+1 and the closed walks in

G
(r)
l through the mapping φR from the edge set of G

(r)
l into Zr . Using the correspondence,

we show that there exist exactly 16 reversible elementary cellular automaton rules and give
the cell sizes for which the rules are reversible. In addition, we give a sufficient condition for
reversibility of the cellular automaton A(3)

2 , and show that there exist ten reversible rules up to
automorphisms.

Since our aim is to find integrable cellular automaton other than box–ball systems, we want
to find as many reversible cellular automata as possible because reversibility is a necessary
condition for integrability, and we will search reversible cellular automata for integrable ones.
Finding sufficient conditions for reversibility of the cellular automata A(r)

l for greater r and l
is another problem.
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